题目:
已知抛物线y=ax
2+bx+6与x轴交于A、B两点(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,且OB=
OC,tan∠ACO=
,顶点为D.
(1)求点A的坐标.
(2)求直线CD与x轴的交点E的坐标.
(3)在此抛物线上是否存在一点F,使得以点A、C、E、F为顶点的四边形是平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(4)若点M(2,y)是此抛物线上一点,点N是直线AM上方的抛物线上一动点,当点N运动到什么位置时,四边形ABMN的面积S最大?请求出此时S的最大值和点N的坐标.
(5)点P为此抛物线对称轴上一动点,若以点P为圆心的圆与(4)中的直线AM及x轴同时相切,则此时点P的坐标为
.
考点梳理
二次函数综合题;二次函数的最值;待定系数法求二次函数解析式;三角形的面积;平行四边形的判定;切线的性质;锐角三角函数的定义.
(1)先令x=0求出点C的坐标,再利用三角函数值求出求出OA的值,从而得到点A的坐标;
(2)求出OB的长度,得到点B的坐标,然后利用待定系数法求出抛物线的解析式,再求出顶点坐标D,再用待定系数法求出直线CD的解析式,就可以求出直线CD与x轴的交点E的坐标;
(3)根据AE是以点A、C、F、E为顶点的平行四边形的边或对角线可以求出对应F的坐标有3个,将三个坐标代入抛物线的解析式检验就可以确定在抛物线上的点F;
(4)过点N作NQ∥x轴交AM于点Q,根据抛物线的解析式设出点M的坐标,并求出点N的坐标,然后求出直线AM的解析式,再根据解析式以及点N的坐标设出点Q的坐标,然后表示出ABMN的面积S,再根据二次函数的最值问题进行解答即可;
(5)先求出直线AM与抛物线对称轴的交点E的坐标,利用勾股定理求出AE的长度,然后分①圆心在x轴上方②圆心在x轴的下方两种情况,根据相似三角形对应边成比例求出圆的半径r,写出点P的坐标即可.
本题着重考查了待定系数法求二次函数解析式、二次函数的最值问题,平行四边形的判定和性质等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.
代数几何综合题;动点型.