试题
题目:
△ABC中,AB=8,BC=7,AC=6,点D、E分别在边AB、AC上,如果△ADE与△ABC相似且相似比为1:3,则AD=
8
3
或2
8
3
或2
.
答案
8
3
或2
解:∵△ADE与△ABC相似且相似比为1:3,AB=8,BC=7,AC=6,
若△ADE∽△ABC,
则
AD
AB
=
1
3
,
∴AD=
8
3
;
若△ADE∽△ACB,
则
AD
AC
=
1
3
,
∴AD=2;
∴AD=
8
3
或2.
故答案为:
8
3
或2.
考点梳理
考点
分析
点评
相似三角形的性质.
由△ADE与△ABC相似,可知△ADE∽△ABC或△ADE∽△ACB,又由相似比为1:3,AB=8,BC=7,AC=6,根据相似三角形的对应边的比即是相似比,即可求得AD的长.
此题考查了相似三角形的性质.注意相似三角形的对应边的比即是相似比.
找相似题
(2011·潼南县)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为( )
(2011·綦江县)若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为( )
(2010·铜仁地区)如图,小明作出了边长为1的第1个正△A
1
B
1
C
1
,算出了正△A
1
B
1
C
1
的面积.然后分别取△A
1
B
1
C
1
三边的中点A
2
、B
2
、C
2
,作出了第2个正△A
2
B
2
C
2
,算出了正△A
2
B
2
C
2
的面积.用同样的方法,作出了第3个正△A
3
B
3
C
3
,算出了正△A
3
B
3
C
3
的面积…,由此可得,第10个正△A
10
B
10
C
10
的面积是( )
(2010·桂林)如图,已知△ADE与△ABC的相似比为1:2,则△ADE与△ABC的面积比为( )
(2009·贵阳)已知两个相似三角形的相似比为2:3,则它们的面积比为( )