试题
题目:
(2010·普陀区一模)已知△ABC与△DEF相似,如果△ABC三边分别长为5,7,8,△DEF的最长边与最短边的差为6,那么△DEF的周长是
40
40
.
答案
40
解:设△DEF的最长边为x,最短边为y,依题意,则有:
x:y=8:5
x-y=6
,解得:x=16,y=10;
∴△ABC和△DEF的相似比为1:2,周长比也是1:2;
∵△ABC的周长=5+7+8=20,
∴△DEF的周长为40.
考点梳理
考点
分析
点评
相似三角形的性质.
根据相似三角形的对应线段成比例可得出△DEF的最长边与最短边的比例关系,进而可求出这两边的长,根据相似三角形的周长比等于相似比即可求出△DEF的周长.
此题主要考查了相似三角形的性质:相似三角形的对应线段成比例,周长比等于相似比.
找相似题
(2011·潼南县)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为( )
(2011·綦江县)若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为( )
(2010·铜仁地区)如图,小明作出了边长为1的第1个正△A
1
B
1
C
1
,算出了正△A
1
B
1
C
1
的面积.然后分别取△A
1
B
1
C
1
三边的中点A
2
、B
2
、C
2
,作出了第2个正△A
2
B
2
C
2
,算出了正△A
2
B
2
C
2
的面积.用同样的方法,作出了第3个正△A
3
B
3
C
3
,算出了正△A
3
B
3
C
3
的面积…,由此可得,第10个正△A
10
B
10
C
10
的面积是( )
(2010·桂林)如图,已知△ADE与△ABC的相似比为1:2,则△ADE与△ABC的面积比为( )
(2009·贵阳)已知两个相似三角形的相似比为2:3,则它们的面积比为( )