试题
题目:
已知:如图,在△PAB中,M、N是AB上两点,且△PMN是等边三角形,△BPM∽△PAN,则∠APB的度数是
120°
120°
.
答案
120°
解:∵△BPM∽△PAN,∴∠BPM=∠A,
∵△PMN是等边三角形,∴∠A+∠APN=60°,即∠APN+∠BPM=60°,
∴∠APB=∠BPM+∠MPN+∠APN=60°+60°=120°,
故答案为120°.
考点梳理
考点
分析
点评
专题
相似三角形的性质.
由△BPM∽△PAN,可得出∠BPM=∠A,进而再由等边三角形的性质以及角之间的转化,即可得出结论.
本题主要考查了相似三角形的性质问题,能够利用其性质求解一些简单的计算问题.
计算题.
找相似题
(2011·潼南县)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为( )
(2011·綦江县)若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为( )
(2010·铜仁地区)如图,小明作出了边长为1的第1个正△A
1
B
1
C
1
,算出了正△A
1
B
1
C
1
的面积.然后分别取△A
1
B
1
C
1
三边的中点A
2
、B
2
、C
2
,作出了第2个正△A
2
B
2
C
2
,算出了正△A
2
B
2
C
2
的面积.用同样的方法,作出了第3个正△A
3
B
3
C
3
,算出了正△A
3
B
3
C
3
的面积…,由此可得,第10个正△A
10
B
10
C
10
的面积是( )
(2010·桂林)如图,已知△ADE与△ABC的相似比为1:2,则△ADE与△ABC的面积比为( )
(2009·贵阳)已知两个相似三角形的相似比为2:3,则它们的面积比为( )