试题
题目:
如图,已知△ABC∽△ADE,AE=50cm,EC=30cm,BC=70cm,∠BAC=45°,∠ACB=40°,求∠AED和∠ADE的度数及DE的长度.
答案
解:∵∠BAC=45°,∠ACB=40°,
∴∠B=180°-45°-40°=95°,
∵△ABC∽△ADE,
∴∠AED=∠ACB=40°,∠ADE=∠B=95°,
∵AE=50cm,EC=30cm,
∴AC=50+30=80cm,
∵△ABC∽△ADE,BC=70cm,
∴
AE
AC
=
DE
BC
,
即
50
80
=
DE
70
,
解得DE=43.75cm.
解:∵∠BAC=45°,∠ACB=40°,
∴∠B=180°-45°-40°=95°,
∵△ABC∽△ADE,
∴∠AED=∠ACB=40°,∠ADE=∠B=95°,
∵AE=50cm,EC=30cm,
∴AC=50+30=80cm,
∵△ABC∽△ADE,BC=70cm,
∴
AE
AC
=
DE
BC
,
即
50
80
=
DE
70
,
解得DE=43.75cm.
考点梳理
考点
分析
点评
专题
相似三角形的性质.
根据三角形内角和定理求出∠B的度数,然后根据相似三角形对应角相等即可求出∠AED和∠ADE的度数,先求出AC的长度,然后根据相似三角形对应边成比例列式计算即可得到DE的长度.
本题考查了相似三角形对应角相等,对应边成比例的性质,准确找出对应边与对应角是解题的关键.
应用题.
找相似题
(2011·潼南县)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为( )
(2011·綦江县)若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为( )
(2010·铜仁地区)如图,小明作出了边长为1的第1个正△A
1
B
1
C
1
,算出了正△A
1
B
1
C
1
的面积.然后分别取△A
1
B
1
C
1
三边的中点A
2
、B
2
、C
2
,作出了第2个正△A
2
B
2
C
2
,算出了正△A
2
B
2
C
2
的面积.用同样的方法,作出了第3个正△A
3
B
3
C
3
,算出了正△A
3
B
3
C
3
的面积…,由此可得,第10个正△A
10
B
10
C
10
的面积是( )
(2010·桂林)如图,已知△ADE与△ABC的相似比为1:2,则△ADE与△ABC的面积比为( )
(2009·贵阳)已知两个相似三角形的相似比为2:3,则它们的面积比为( )