试题

题目:
如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止,点D运动的速度为1cm/s,点E运动的速度为2cm/s,如果两点同时开始运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是多少秒?青果学院
答案
解:当运动的时间是t秒时,以点A、E、D为顶点的三角形与△ABC相似,
①当
AD
AB
=
AE
AC
时,
t
6
=
12-2t
12
,∴t=3(s);
②当
AD
AC
=
AE
AB
时,
t
12
=
12-2t
6
,∴t=4.8(s);
综上所述,当t为3秒或4.8秒时,
以点A、D、E为顶点的三角形与△ABC相似.
解:当运动的时间是t秒时,以点A、E、D为顶点的三角形与△ABC相似,
①当
AD
AB
=
AE
AC
时,
t
6
=
12-2t
12
,∴t=3(s);
②当
AD
AC
=
AE
AB
时,
t
12
=
12-2t
6
,∴t=4.8(s);
综上所述,当t为3秒或4.8秒时,
以点A、D、E为顶点的三角形与△ABC相似.
考点梳理
相似三角形的性质.
根据题意,可分为
AD
AB
=
AE
AC
AD
AC
=
AE
AB
两种情况来研究,列出关系式,代入数据可得答案.
本题考查的是相似三角形的性质,解答此类题目要根据实际问题具体分析,锻炼了学生从多个角度思考问题的能力.
综合题;动点型;分类讨论.
找相似题