试题

题目:
青果学院(2004·烟台)如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是(  )



答案
D
解:∵在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,
∴CD=10,BC=6,DE=3.
∵△CBF∽△CDE,
∴BF:DE=BC:DC,
∴BF=6÷10×3=1.8.
故选D.
考点梳理
相似三角形的性质;平行四边形的性质.
由△CBF∽△CDE,根据相似三角形的对应边对应成比例,可知BF:DE=BC:DC,即BF=BC:DC×DE.又四边形ABCD是平行四边形,根据平行四边形的对边相等,可知BC=AD=6,DC=AD=10,易知DE=3,从而求出BF的长.
本题主要考查了平行四边形的性质及相似三角形的性质:平行四边形的对边相等.相似三角形的对应边成比例.
压轴题.
找相似题