试题

题目:
青果学院(2007·连云港)如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为(  )



答案
A
解:∵△ABC中,AB=AC,∠BAC=20°
∴∠ACB=80°
又∵∠PAQ=∠PAB+∠BAC+∠CAQ=100°
∴∠PAB+∠CAQ=80°
△ABC中:∠ACB=∠CAQ+∠AQC=80°
∴∠AQC=∠PAB
同理:∠P=∠CAQ
∴△APB∽△QAC
PB
AC
=
AB
QC
,即
x
2
=
2
y

则函数解析式是y=
4
x

故选A.
考点梳理
相似三角形的性质;动点问题的函数图象;等腰三角形的性质.
根据△ABC是等腰三角形,∠BAC=20°,则∠ABC=∠ACB=80°.根据三角形的外角等于不相邻的两内角的和,得到∠QAC=∠P,得到△APB∽△QAC,根据相似三角形的对应边的比相等,即可求得x与y的函数关系式,即可进行判断.
注意本题不一定要通过求解析式来解决.能够根据角度的关系,联想到△APB∽△QAC是解决本题的关键.
压轴题;动点型.
找相似题