试题
题目:
数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,但当他们马上测量树高时,发现树的影子不落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处.同学们认为继续量也可以求出树高,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米(每级台阶的宽度相同).请你和他们一起算一下,树高为多少.(假设两次测量时太阳光线是平行的)
答案
解:根据同一时刻物高与影长成正比例,
∴
1
0.9
=
AD
1.1+1.6
.
∴AD=3.
∴AB=AD+DB=3+1=4.
解:根据同一时刻物高与影长成正比例,
∴
1
0.9
=
AD
1.1+1.6
.
∴AD=3.
∴AB=AD+DB=3+1=4.
考点梳理
考点
分析
点评
专题
相似三角形的应用.
此题考查了同一时刻物高与影长成正比例的知识,解此题的关键是找到各部分以及与其对应的影长.
本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解,加上DB的长即可.
应用题;转化思想.
找相似题
(2013·咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )
(2011·丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是( )
(2010·泰州)一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要估做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )
(2009·湘潭)同一时刻,身高2.26m的姚明在阳光下影长为1.13m;小林浩在阳光下的影长为0.64m,则小林浩的身高为( )
(2008·庆阳)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )