试题
题目:
(2009·贺州)如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是
2
3
2
3
cm
2
.
答案
2
3
解:连接AC,过点O作MN∥BC交AB于点M,交DC于点N,PQ∥CD交AD于点P,交BC于点Q;
∵AC为∠BAD的角平分线,
∴OM=OP,OQ=ON;
设OM=OP=h
1
,ON=OQ=h
2
,
∵ON∥BC,
∴
ON
CE
=
DN
DC
,
即
h2
1
2
=
1-h2
1
,
解得:h
2
=
1
3
;
∴OM=OP=h
1
=1-
1
3
=
2
3
(cm);
∴S
阴影
=S
△AOB
+S
△AOD
=
1
2
×1×
2
3
+
1
2
×1×
2
3
=
2
3
(cm
2
).
考点梳理
考点
分析
点评
专题
正方形的性质;平行线分线段成比例.
阴影部分的面积可转化为两个三角形面积之和,根据角平分线定理,可知阴影部分两个三角形的高相等,正方形的边长已知,故只需将三角形的高求出即可,根据△DON∽△DEC可将△ODC的高求出,进而可将阴影部分两个三角形的高求出.
求不规则图形面积可通过几个规则图形面积相加或相减求得.
压轴题.
找相似题
(2010·鞍山)如图,设M、N分别是直角梯形ABCD两腰AD、CB的中点,DE上AB于点E,将△ADE沿DE翻折,M与N恰好重合,则AE:BE等于( )
(2004·襄阳)在△ABC中,BE平分∠ABC交AC于点E,ED∥CB交AB于点D,已知:AD=1,DE=2,则BC的长为( )
(2002·烟台)如图,△ABC中,已知MN∥BC,DN∥MC.小红同学由此得出了以下四个结论:
(1)
AN
CN
=
AM
AB
;(2)
AD
DM
=
DN
MC
;(3)
AM
MB
=
AN
NC
;(4)
DN
MC
=
MN
BC
.
其中正确结论的个数为( )
(2002·嘉兴)如图,l
1
∥l
2
∥l
3
,已知AB=6cm,BC=3cm,A
1
B
1
=4cm,则线段B
1
C
1
的长度为( )
(2002·海南)如图,已知梯形ABCD中,AD∥BC,对角线AC、BD分别交中位线EF于点H、G,且EG:GH:HF=1:2:1,那么AD:BC等于( )