试题
题目:
如图,△ABC中,D、E是BC边上的点,且BD:DE:EC=3:2:1,P是AC边上的点,且AP:PC=2:1,BP分别交AD、AE于M、N,则BM:MN:NP等于( )
A.3:2:1
B.5:3:1
C.25:12:5
D.51:24:10
答案
D
解:作PF∥BC交AE于点F,作DG∥AC交BP于点G.
∵BD:DE:EC=3:2:1,
∴设EC=a,则BD=3a,DE=2a.
同理,设PC=b,则AP=2b.
∵NP∥BC,
∴
PF
EC
=
AP
AC
=
2b
3b
=
2
3
,
NP
NB
=
PF
BE
,
∴PF=
2
3
a,则
NP
NB
=
2
3
a
5a
=
2
15
,
∴
NP
BP
=
2
17
,即NP=
2
17
BP,
∵DG∥AC,BD=DC=3a,
∴BG=
1
2
BP,DG=
1
2
PC=
1
2
b.
∵DG∥AC,
∴
GM
MP
=
DG
AP
=
1
2
b
2b
=
1
4
,
∴
GM
GP
=
1
5
,
∴GM=
1
5
GP=
1
10
BP,
∴MN=BP-BG-GM-NP=BP-
1
2
BP-
1
10
BP-
2
17
BP=
24
85
BP,BM=BG+DM=
1
2
BP+
1
10
BP=
3
5
BP.
∴BM:MN:NP=
3
5
:
24
85
:
2
17
=51:24:10.
故选D.
考点梳理
考点
分析
点评
平行线分线段成比例.
作PF∥BC交AE于点F,作DG∥AC交BP于点G,设EC=a,则BD=3a,DE=2a.同理,设PC=b,则AP=2b.利用平行线分线段成比例定理以及比例的性质,即可利用BP分别表示出BM、MN、NP的长度,从而求解.
本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.
找相似题
(2010·鞍山)如图,设M、N分别是直角梯形ABCD两腰AD、CB的中点,DE上AB于点E,将△ADE沿DE翻折,M与N恰好重合,则AE:BE等于( )
(2004·襄阳)在△ABC中,BE平分∠ABC交AC于点E,ED∥CB交AB于点D,已知:AD=1,DE=2,则BC的长为( )
(2002·烟台)如图,△ABC中,已知MN∥BC,DN∥MC.小红同学由此得出了以下四个结论:
(1)
AN
CN
=
AM
AB
;(2)
AD
DM
=
DN
MC
;(3)
AM
MB
=
AN
NC
;(4)
DN
MC
=
MN
BC
.
其中正确结论的个数为( )
(2002·嘉兴)如图,l
1
∥l
2
∥l
3
,已知AB=6cm,BC=3cm,A
1
B
1
=4cm,则线段B
1
C
1
的长度为( )
(2002·海南)如图,已知梯形ABCD中,AD∥BC,对角线AC、BD分别交中位线EF于点H、G,且EG:GH:HF=1:2:1,那么AD:BC等于( )