试题

题目:
电子商务的快速发展带动了网上购物的人越来越多,订购的商品往往通过快递来送达.买多网上某店铺率先与“青蛙王子”童装厂取得联系,经营该厂家某种型号的童装.根据第一周的销售记录,该型号服装每天的售价x(元/件)与当日的销售量y(件)的相关数据如下表:
每件的销售价x(元/件) 200 190 180 170 160 150 140
每天的销售量y(件) 80 90 100 110 120 130 140
已知该型号童装每件的进价是70元,同时为吸引顾客,该店铺承诺,每件服装的快递费10元由卖家承担.
(1)请用一次函数表示出y与x的函数关系式.
(2)设第一周每天的赢利为w元,求w关于x的函数关系式,并求出每天的售价为多少元时,每天的赢利最大?最大赢利是多少?
答案
解:(1)设一次函数的解析式为y=kx+b,从表格中可知点(200,80)和(190,90)满足函数的解析式,
200k+b=80
190k+b=90

解得:
k=-1
b=280

故y与x的函数关系式为y=-x+280;

(2)w=xy-70y-10y=(x-80)(-x+280)=-x2+360x-22400,
=-(x-180)2+10000
因为-1<0,所以抛物线开口向下,
所以当x=180时,w最大为10000,
即每件的售价为180元时,每天的赢利最大为10000元.
解:(1)设一次函数的解析式为y=kx+b,从表格中可知点(200,80)和(190,90)满足函数的解析式,
200k+b=80
190k+b=90

解得:
k=-1
b=280

故y与x的函数关系式为y=-x+280;

(2)w=xy-70y-10y=(x-80)(-x+280)=-x2+360x-22400,
=-(x-180)2+10000
因为-1<0,所以抛物线开口向下,
所以当x=180时,w最大为10000,
即每件的售价为180元时,每天的赢利最大为10000元.
考点梳理
二次函数的应用.
(1)设一次函数的解析式为y=kx+b,从表格中可知点(200,80)和(190,90)满足函数的解析式,代入求出k和b的值即可;
(2)根据关系式:日利润=日销售量×每件利润,列出w关于x的函数关系式,然后根据函数性质求最大值后比较得结论.
本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.
找相似题