试题
题目:
(2008·哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大,最大面积是多少?
答案
解:(1)S=x(30-x)(2分)
自变量x的取值范围为:
0<x<30.(1分)
(2)S=x(30-x)
=-(x-15)
2
+225,(2分)
∴当x=15时,S有最大值为225平方米.
即当x是15时,矩形场地面积S最大,最大面积是225平方米.(1分)
解:(1)S=x(30-x)(2分)
自变量x的取值范围为:
0<x<30.(1分)
(2)S=x(30-x)
=-(x-15)
2
+225,(2分)
∴当x=15时,S有最大值为225平方米.
即当x是15时,矩形场地面积S最大,最大面积是225平方米.(1分)
考点梳理
考点
分析
点评
二次函数的应用.
(1)已知周长为60米,一边长为x,则另一边长为30-x.
(2)用配方法化简函数解析式,求出s的最大值.
本题考查的是二次函数的应用,难度属一般.
找相似题
(2011·济南)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at
2
+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )
(2010·庆阳)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0).若此炮弹在第7秒与第13秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2010·南充)如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是( )
(2010·定西)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2009·台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax
2
+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )