试题

题目:
(2010·鄂州)如图,一面利用墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x米.
(1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求S与x之间函数关系.
青果学院
(2)在(1)的条件下,围成的花圃面积为45平方米时,求AB的长.能否围成面积比45平方米更大的花圃?如果能,应该怎么围?如果不能请说明理由.
(3)当院墙可利用最大长度为40米,篱笆长为77米,中间建n道篱笆间隔成小矩形,当这些小矩形为正方形,且x为正整数时,请直接写出一组满足条件的x,n的值.
青果学院
答案
解:(1)由题意得:
S=x×
24-x
3
=-
1
3
x2+8x  (0<x≤10)

(2)由S=-
1
3
x2+8x=45,
解得;x1=15(舍去),x2=9,
∴x=9,AB=
24-x
3
=5,
又S=-
1
3
x2+8x=-
1
3
(x-12)2+48,0<x≤10,
∵当x≤10时,S随x的增大而增大,
∴当x=10米时,S最大,为
140
3
平方米>45平方米,
∴平行于院墙的一边长为10时,就能围成面积比45平方米更大的花圃.

(3)根据题意可得:
77-x
n+2
=
x
n+1

n=4;x=35
解:(1)由题意得:
S=x×
24-x
3
=-
1
3
x2+8x  (0<x≤10)

(2)由S=-
1
3
x2+8x=45,
解得;x1=15(舍去),x2=9,
∴x=9,AB=
24-x
3
=5,
又S=-
1
3
x2+8x=-
1
3
(x-12)2+48,0<x≤10,
∵当x≤10时,S随x的增大而增大,
∴当x=10米时,S最大,为
140
3
平方米>45平方米,
∴平行于院墙的一边长为10时,就能围成面积比45平方米更大的花圃.

(3)根据题意可得:
77-x
n+2
=
x
n+1

n=4;x=35
考点梳理
二次函数的应用.
(1)根据等量关系“花圃的面积=花圃的长×花圃的宽”列出函数关系式,并确定自变量的取值范围;
(2)令S=45,将其代入所求得的函数关系式里求得x,再算出AB的长.通过函数关系式求得S的最大值,得出能否围成面积比45平方米更大的花圃;
(3)根据等量关系“花圃的长=(n+1)×花圃的宽”写出符合题中条件的x,n.
本题考查了同学们列函数关系式并求解最值的能力,同时需要注意自变量的取值范围.
压轴题.
找相似题