试题
题目:
施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系
(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;
(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明.
答案
解:(1)∵M(12,0),P(6,6).
∴设这条抛物线的函数解析式为y=a(x-6)
2
+6,
∵抛物线过O(0,0),
∴a(0-6)
2
+6=0,解得a=-
1
6
,
∴这条抛物线的函数解析式为y=-
1
6
(x-6)
2
+6,
即y=-
1
6
x
2
+2x.(0≤x≤12);
(2)当x=6-0.5-2.5=3(或x=6+0.5+2.5=9)时
y=4.5<5
故不能行驶宽2.5米、高5米的特种车辆.
解:(1)∵M(12,0),P(6,6).
∴设这条抛物线的函数解析式为y=a(x-6)
2
+6,
∵抛物线过O(0,0),
∴a(0-6)
2
+6=0,解得a=-
1
6
,
∴这条抛物线的函数解析式为y=-
1
6
(x-6)
2
+6,
即y=-
1
6
x
2
+2x.(0≤x≤12);
(2)当x=6-0.5-2.5=3(或x=6+0.5+2.5=9)时
y=4.5<5
故不能行驶宽2.5米、高5米的特种车辆.
考点梳理
考点
分析
点评
二次函数的应用.
(1)根据所建坐标系知顶点P和与X轴交点M的坐标,可设解析式为顶点式形式求解,x的取值范围是0≤x≤12;
(2)根据对称性当车宽2.5米时,x=3或9,求此时对应的纵坐标的值,与车高5米进行比较得出结论.
本题考查了二次函数的应用,解题的关键是通过建模把实际问题转化为数学模型,这充分体现了数学的实用性.
找相似题
(2011·济南)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at
2
+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )
(2010·庆阳)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0).若此炮弹在第7秒与第13秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2010·南充)如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是( )
(2010·定西)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2009·台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax
2
+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )