试题

题目:
某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)如果该文具的销售单价高于进价且不超过30元,请你计算最大利润.
答案
解:(1)由题意得,销售量=250-10(x-25)=-10x+500,
则w=(x-20)(-10x+500)
=-10x2+700x-10000;

(2)w=-10x2+700x-10000=-10(x-35)2+2250.
∵-10<0,
∴函数图象开口向下,w有最大值,
当x=35时,wmax=2250,
故当单价为35元时,该文具每天的利润最大;

(3)A方案中:20<x≤30,对称轴左侧w随x的增大而增大,
故当x=30时,w有最大值,此时w=2000.
解:(1)由题意得,销售量=250-10(x-25)=-10x+500,
则w=(x-20)(-10x+500)
=-10x2+700x-10000;

(2)w=-10x2+700x-10000=-10(x-35)2+2250.
∵-10<0,
∴函数图象开口向下,w有最大值,
当x=35时,wmax=2250,
故当单价为35元时,该文具每天的利润最大;

(3)A方案中:20<x≤30,对称轴左侧w随x的增大而增大,
故当x=30时,w有最大值,此时w=2000.
考点梳理
二次函数的应用.
(1)根据利润=(单价-进价)×销售量,列出函数关系式即可;
(2)根据(1)式列出的函数关系式,运用配方法求最大值;
(3)利用二次函数增减性直接求出最值即可.
本题考查了二次函数的应用,难度较大,最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-
b
2a
时取得.
找相似题