试题

题目:
一个高为2
15
cm,底面半径为2cm的圆锥形无底纸帽,现利用这个纸帽的侧面纸张裁剪出一个圆形纸片(不考虑纸帽接缝),这个圆形纸片的半径是
(8
2
-8)
(8
2
-8)
cm.
答案
(8
2
-8)

解:∵圆锥的高为2
15
cm,底面半径为2cm,
∴圆锥的母线长为
(2
15
)
2
+22
=8cm;圆锥的底面周长为4π,
设扇形的圆心角为n,
nπ×8
180
=4π,
解得n=90°,
设圆形纸片的半径为r.
∴r+
2
r=8,
解得:r=(8
2
-8)cm.
考点梳理
圆锥的计算.
由底面半径可求得圆锥的底面周长,利用勾股定理可求得圆锥的母线长,利用底面周长为侧面展开图的弧长可求得扇形的圆心角,那么圆形纸片的最大半径应为和扇形相切的圆的半径,关系式为:圆形纸片的半径+圆形纸片半径的
2
倍=圆锥的母线长.
用到的知识点为:圆锥的底面半径,母线长,高组成直角三角形,可利用勾股定理求解;圆锥的侧面展开图的弧长等于底面周长.
压轴题.
找相似题