试题
题目:
(2012·龙岩模拟)如图,在边长为23cm的正方形铁皮上,按图示剪取一块圆形和一块扇形铁皮,恰好做成一个圆锥模型,则该圆锥模型的底面半径是
5
2
-2
5
2
-2
cm.
答案
5
2
-2
解:连接AC,设圆锥模型的底面半径是r,扇形铁皮的半径是R,
由题意知:∠DCB=90°,2πr=
1
4
·2πR,
解得:R=4r,
∵四边形ABCD是正方形,
∴∠DAB=90°=∠D,DC=AD=23,
由勾股定理得:AC=
23
2
+23
2
=23
2
,
∵根据相切两圆的性质和切线性质得:CO=R+r,∠OQA=∠ONA=90°=∠DAB,OQ=ON,
∴四边形QANO是正方形,
∴AQ=OQ=r,
由勾股定理得:AO=
r
2
+r
2
=
2
r,
∵AC=AO+OC,
∴
2
r+r+R=23
2
,
∴r=
23
2
2
+5
=5
2
-2.
故答案为:5
2
-2.
考点梳理
考点
分析
点评
相切两圆的性质;正方形的性质;圆锥的计算.
连接AC,设圆锥模型的底面半径是r,扇形铁皮的半径是R,得出2πr=
1
4
·2πR,求出R=4r.连接OQ、ON,得出正方形OQAN,得出OQ=AQ,根据勾股定理求出AC,AO,即可得出
2
r+r+R=23
2
,求出r即可.
本题考查的知识点有相切两圆的性质、圆的切线性质、正方形的性质和判定、勾股定理等,主要考查学生运用定理进行计算和推理的能力,题目比较典型,是一道比较好的题目.
找相似题
(2013·遂宁)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )
(2013·绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是( )
(2013·南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为( )
(2013·南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是( )
(2013·莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )