试题

题目:
青果学院如图是小明制作的一个圆锥形纸帽的示意图,围成这个纸帽的纸(圆锥的侧面)的面积为
300π
300π
cm2.若从纸帽的底面圆周上点A处用一条红线绕纸帽的侧面一圈,那么这样的红线至少要
30
3
30
3
cm.(红线的接头长度忽略不计)
答案
300π

30
3

青果学院解:∵圆锥的底面半径为20÷2=10cm,
∴圆锥的侧面积=π×10×30=300πcm2.圆锥的底面周长为2π×10=20πcm.
设圆锥侧面展开图的圆心角为n,
nπ×30
180
=20π,
解得n=120°.
作OC⊥AA′于点C,
∴∠AOC=60°,
∴AC=AO×sin∠AOC=15
3
cm,
∴AA′=2AC=30
3
cm.
故答案为300π;30
3
考点梳理
圆锥的计算.
易得圆锥的底面半径为10cm,圆锥的侧面积=π×底面半径×母线长;易得圆锥的底面周长,也就是侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图的圆心角度数,求得侧面展开图中AA′的距离即为最短的红线长.
考查圆锥的计算;突破点是求得圆锥侧面展开图的圆心角度数;用到的知识点为:立体几何中的最短距离问题要转换为平面几何中求两点的距离问题;圆锥的底面周长等于侧面展开图的弧长.
计算题.
找相似题