试题
题目:
已知圆⊙A的半径为2,⊙B的半径为3,圆心A的坐标是(0,2),圆心B的坐标为(4,-1),则⊙A与⊙B的位置关系为
外切
外切
.
答案
外切
解:∵圆心的坐标分别是(0,2)和(4,-1),
∴圆心距d=5,
d=3+2,
∴两圆外切,
故答案为外切.
考点梳理
考点
分析
点评
圆与圆的位置关系;坐标与图形性质.
首先根据两圆圆心的坐标确定两圆的圆心距,然后确定两圆的位置关系.
本题主要考查圆与圆的位置关系,①外离,则P>R+r;②外切,则P=R+r;③相交,则R-r<P<R+r;④内切,则P=R-r;⑤内含,则P<R-r.
(P表示圆心距,R,r分别表示两圆的半径).
找相似题
(2013·孝感)下列说法正确的是( )
(2013·西宁)两个半径不等的圆相切,圆心距为6cm,且大圆半径是小圆半径的2倍,那么小圆的半径为( )
(2013·钦州)已知⊙O
1
与⊙O
2
的半径分别为2cm和3cm,若O
1
O
2
=5cm.则⊙O
1
与⊙O
2
的位置关系是( )
(2013·宁德)如图所示的两圆位置关系是( )
(2012·营口)圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为( )