试题

题目:
△ABC中,AB=AC=5厘米,BC=8厘米,⊙O分别切BC、AB、AC于D、E、F,那么⊙O半径为
4
3
4
3
厘米.
答案
4
3

青果学院解:设圆O的半径是r厘米,
连接AO、OE、OF、OD、OB、0C,
则OE=OF=OD=r厘米,
∵△ABC中,AB=AC,⊙O分别切BC、AB、AC于D、E、F,
∴AD过O,AD⊥BC,OE⊥AB,OF⊥AC,
∴BD=DC=
1
2
×8=4,
根据勾股定理得:AD=
AB2-BD2
=3,
∴S△ACB=
1
2
BC×AD=
1
2
×8×3=12,
∵S△ABC=S△ABO+S△BCO+S△ACO
∴12=
1
2
BCr+
1
2
ABr+
1
2
ACr,
∴r=
4
3

故答案为:
4
3
考点梳理
三角形的内切圆与内心;三角形的面积;等腰三角形的性质;勾股定理.
设圆O的半径是r厘米,连接AO、OE、OF、OD、OB、0C,根据等腰三角形性质求出AD⊥BC,根据勾股定理求出高AD,求出△ABC面积,根据S△ABC=S△ABO+S△BCO+S△ACO和三角形面积公式代入求出即可.
本题主要考查对三角形的面积,等腰三角形的性质,勾股定理,三角形的内切圆与内心等知识点的理解和掌握,能求出△ABC的面积和推出S△ABC=S△ABO+S△BCO+S△ACO是解此题的关键.
计算题.
找相似题