答案
解:∠A=180°-2∠FDE,理由是:
∵△ABC的内切圆O与边BC、CA、AB分别相切于点D、E、F.
∴∠AFO=∠AEO=90°,
∴∠A=360°-∠AFO-∠AEO-∠FOE=180°-∠FOE,
∵弧EF对的圆周角是∠EDF,对的圆心角是∠FOE,
∴∠FOE=2∠FDE,
∴∠A=180°-2∠FDE.
解:∠A=180°-2∠FDE,理由是:
∵△ABC的内切圆O与边BC、CA、AB分别相切于点D、E、F.
∴∠AFO=∠AEO=90°,
∴∠A=360°-∠AFO-∠AEO-∠FOE=180°-∠FOE,
∵弧EF对的圆周角是∠EDF,对的圆心角是∠FOE,
∴∠FOE=2∠FDE,
∴∠A=180°-2∠FDE.