试题
题目:
已知等腰△ABC中,AB=AC=13cm,BC=10cm,则△ABC的内切圆半径为
10
3
10
3
cm.
答案
10
3
解:如图,∵AB=AC=13cm,BC=10cm,
∴BD=5cm,
∴AD=12cm,
根据切线长定理,AE=AB-BE=AB-BD=13-5=8,
设△ABC的内切圆半径为r,
∴AO=12-r,
∴(12-r)
2
-r
2
=64,
解得r=
10
3
,
故答案为
10
3
.
考点梳理
考点
分析
点评
专题
三角形的内切圆与内心;等腰三角形的性质.
如图,设△ABC的内切圆半径为r,由勾股定理得AD=12,再由切线长定理得AE=8,根据勾股定理求得r即可.
本题考查了勾股定理、三角形的内切圆和等腰三角形的性质,是基础知识要熟练掌握.
计算题.
找相似题
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2007·成都)如图,⊙O内切于△ABC,切点为D、E、F,若∠B=50°,∠C=60°,连接OE,OF,DE,DF,∠EDF等于( )
(2006·钦州)如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,则△ADE的周长为( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·山西)已知Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.则其内心和外心之间的距离是( )