试题
题目:
(2006·沈阳)已知点I是△ABC的内心,∠BIC=130°,则∠BAC的度数是
80
80
度.
答案
80
解:∵点I是△ABC的内心,
∴∠IBC=
1
2
∠ABC,∠ICB=
1
2
∠ACB;
△IBC中,∠BIC=130°;
∴∠IBC+∠ICB=180°-∠BIC=50°;
∴∠ABC+∠ACB=100°;
∴∠BAC=180°-(∠ABC+∠ACB)=80°.
故答案为:80.
考点梳理
考点
分析
点评
三角形的内切圆与内心.
已知I是△ABC的内心,则IB、IC分别平分∠ABC、∠ACB;由三角形内角和定理,可求得∠IBC+∠ICB的度数,也就求出了∠ABC+∠ACB的度数,进而可求出∠BAC的度数.
本题主要考查三角形内切圆的性质以及三角形内角和定理.
找相似题
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2007·成都)如图,⊙O内切于△ABC,切点为D、E、F,若∠B=50°,∠C=60°,连接OE,OF,DE,DF,∠EDF等于( )
(2006·钦州)如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,则△ADE的周长为( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·山西)已知Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.则其内心和外心之间的距离是( )