试题
题目:
如图,⊙O内切△ABC于D、E、F,∠B=50°,∠C=60°,则∠FDE的度数为( )
A.50°
B.55°
C.60°
D.70°
答案
B
解:连接OE,OF,
∵∠B=50°,∠C=60°,
∴∠A=180°-50°-60°=70°,
∵⊙O内切△ABC于D、E、F,
∴∠AFO=∠AEO=90°,
∴∠FOE=180°-∠A=180°-70°=110°,
∴∠FDE=
1
2
∠FOE=55°.
故选:B.
考点梳理
考点
分析
点评
三角形的内切圆与内心.
首先求出∠A的度数,再根据切线的性质定理以及四边形的内角和得出∠FOE的度数,进而得出∠FDE的度数.
本题考查了三角形的内切圆与内心,综合运用了圆周角定理以及切线的性质定理和四边形的内角和定理得出∠FOE的度数是解题关键.
找相似题
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2007·成都)如图,⊙O内切于△ABC,切点为D、E、F,若∠B=50°,∠C=60°,连接OE,OF,DE,DF,∠EDF等于( )
(2006·钦州)如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,则△ADE的周长为( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·山西)已知Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.则其内心和外心之间的距离是( )