试题
题目:
(2006·崇左)等边三角形的外接圆面积是内切圆面积的( )
A.2倍
B.3倍
C.4倍
D.5倍
答案
C
解:因为等边三角形的三线合一,所以圆心为其重心,即外接圆的半径是内接圆半径的2倍,所以外接圆面积是内切圆面积的4倍.
故选C.
考点梳理
考点
分析
点评
等边三角形的性质;三角形的外接圆与外心;三角形的内切圆与内心.
根据等边三角形的三线合一,可以发现并证明等边三角形的外接圆半径是内切圆半径的2倍.再根据圆的面积公式,得出其外接圆的面积是内切圆面积的4倍.
本题需要注意:等边三角形的外接圆的半径是内切圆的半径的2倍.
找相似题
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2007·成都)如图,⊙O内切于△ABC,切点为D、E、F,若∠B=50°,∠C=60°,连接OE,OF,DE,DF,∠EDF等于( )
(2006·钦州)如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,则△ADE的周长为( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·山西)已知Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.则其内心和外心之间的距离是( )