试题
题目:
Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为( )
A.15
B.12
C.13
D.14
答案
B
解:连接OA、OB、OC、OD、OE、OF,
∵⊙O是△ABC的内切圆,切点分别是D、E、F,
∴OD⊥AC,OE⊥AB,OF⊥BC,AD=AE,BE=BF,
∴∠ODC=∠OFC=∠ACB=90°,
∵OD=OF,
∴四边形ODCF是正方形,
∴CD=OD=OF=CF=1,
∵AD=AE,BF=BE,
∵AE+BE=AB=5,
∴AD+BF=5,
∴△ABC的周长是:AC+BC+AB=AD+CD+CF+BF+AB=5+1+1+5=12.
故选B.
考点梳理
考点
分析
点评
专题
三角形的内切圆与内心;正方形的判定与性质;切线的性质;切线长定理.
根据切线的性质得出∠ODC=∠OFC=∠ACB=90°,得出正方形ODCF,求出CD=CF=1,根据切线长定理求出AD+BF=AE+BE=5,代入AC+BC+AB求出即可.
本题考查了切线的性质,正方形的性质和判定,切线长定理,三角形的内切圆等知识点的应用,关键是求出CD、CF、AD+BF的长,主要考查学生运用定理进行计算的能力,题目比较典型,难度适中.
计算题.
找相似题
(2009·自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是( )
(2007·成都)如图,⊙O内切于△ABC,切点为D、E、F,若∠B=50°,∠C=60°,连接OE,OF,DE,DF,∠EDF等于( )
(2006·钦州)如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,则△ADE的周长为( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2005·山西)已知Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.则其内心和外心之间的距离是( )