试题

题目:
青果学院如图,Rt△ABC中,∠C=90°,⊙O内切△ABC于点D、E、F,AD=2cm,BD=3cm,则⊙O的半径为(  )



答案
D
青果学院解:连接OD、OE、OF,由切线长定理可得AD=AF,BD=BE,CE=CF,
∵AD=2cm,BD=3cm,
∴AD=AF=2cm,BD=BE=3cm,
∵OE⊥BC,OF⊥AC,∠C=90°,OF=OE,
∴四边形OEFC是正方形,
设CE=x,则AC=AF+CF=2+x,BC=BE+CE=3+x,
在Rt△ABC中,AB2=AC2+BC2,即(2+3)2=(2+x)2+(3+x)2
解得x=1cm或x=-6cm(舍去).
故选D.
考点梳理
三角形的内切圆与内心.
连接OD、OE、OF,由切线长定理可得AD=AF,BD=BE,CE=CF,根据正方形的判定定理可求出四边形OEFC是正方形,设CE=x,由勾股定理即可求解.
本题考查的是三角形的内切圆与内心、切线长定理及勾股定理、正方形的判定与性质,根据题意作出辅助线是解答此题的关键.
探究型.
找相似题