答案
C
解:∵△ABC、△DEF都是正三角形,且△DEF的三个顶点都在△ABC的边上,
∴∠A=∠B=∠C=60°,EF=DE=DF,
∴∠AFE+∠BFD=120°,∠BFD+∠FDB=120°,
∴∠AFE=∠BDF,
同理可得:∠AFE=∠BDF=∠CED,
∵在△AEF和△BFD和△CDE中,
| ∠A=∠B=∠C | ∠AFE=∠BDF=∠CED | EF=FD=DE |
| |
∴△AEF≌△BFD≌△CDE(AAS),
故①正确;
∴AE=BF,
∴△AEF的周长为:AE+AF+EF=BF+AF+EF=AB+EF=6+4=10,
故②正确;
设△AEF的内切圆半径为r,
∵S
△ABC=9
,S
△DEF=4
,
∴S
△AEF=
(S
△ABC-S
△DEF)=
,
∴r=
=
=
,
故③正确.
故选C.