试题
题目:
(2007·越秀区一模)如图,PA、PB、DE分别切⊙O于A、B、C点,若圆O的半径为6,OP=10,则△PDE的周长为( )
A.10
B.12
C.16
D.20
答案
C
解:∵PA、PB、DE分别切⊙O于A、B、C点,
∴AD=CD,CE=BE,PA=PB,OA⊥AP.
在直角三角形OAP中,根据勾股定理,得AP=8,
∴△PDE的周长为2AP=16.
故选C.
考点梳理
考点
分析
点评
切线长定理;勾股定理.
根据切线的性质,得到直角三角形OAP,根据勾股定理求得PA的长;根据切线长定理,得AD=CD,CE=BE,PA=PB,从而求解.
此题综合运用了切线长定理和勾股定理.
找相似题
(2008·上海)如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2004·云南)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为( )
(2000·金华)如图,圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于( )