答案
证明:(1)∵∠ADE=∠APD+∠PAD,∠AED=∠CPE+∠C,
又∠APD=∠CPE,∠PAD=∠C.
∴∠ADE=∠AED.
∴AD=AE.
(2)∵∠APB=∠CPA,∠PAB=∠C,
∴△APB∽△CPA,得
=.
∵∠APE=∠BPD,∠AED=∠ADE=∠PDB,
∴△PBD∽△PEA,得
=.
∴
=.
∴AB·AE=AC·DB.
证明:(1)∵∠ADE=∠APD+∠PAD,∠AED=∠CPE+∠C,
又∠APD=∠CPE,∠PAD=∠C.
∴∠ADE=∠AED.
∴AD=AE.
(2)∵∠APB=∠CPA,∠PAB=∠C,
∴△APB∽△CPA,得
=.
∵∠APE=∠BPD,∠AED=∠ADE=∠PDB,
∴△PBD∽△PEA,得
=.
∴
=.
∴AB·AE=AC·DB.