试题
题目:
如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若∠ACE=25°,则∠D的度数是( )
A.50°
B.55°
C.60°
D.65°
答案
A
解:连接BC,
∵DB、DE分别切⊙O于点B、C,
∴∠ACE=∠ABC,BD=DC,
∵∠ACE=25°,
∴∠ABC=25°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠DBC=∠DCB=90°-25°=65°,
∴∠D=50°.
故选A.
考点梳理
考点
分析
点评
专题
弦切角定理;圆周角定理;切线的性质.
连接BC,由弦切角定理得∠ACE=∠ABC,再由切线的性质求得∠DBC,最后由切线长定理求得∠D的度数.
本题考查了切线的性质、圆周角定理、弦切角定理等知识,综合性强,难度较大.
计算题.
找相似题
(2010·台湾)如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则
CD
的度数为何( )
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2005·天津)如图,直线AD与△ABC的外接圆相切于点A,若∠B=60°,则∠CAD等于( )
(2004·威海)如图,AB为⊙O的直径,C、D为⊙O上的点,直线MN切⊙O于C点,图中与∠BCN互余的角有( )
(2004·深圳)圆内接四边形ABCD中,AC平分∠BAD,EF切圆于C,若∠BCD=120°,则∠BCE=( )