试题
题目:
定义:一个定点与圆上各点之间距离的最小值称为这个点与这个圆之间的距离.现有一矩形ABCD如图所示,AB=14cm,BC=12cm,⊙K与矩形的边AB、BC、CD分别相切于点E、F、G,则点A与⊙K的距离为
4
4
cm.
答案
4
解:连KE,KG
,KF,连AK交⊙K于M点,如图,
∵AB、CD、BC与⊙K相切,
∴KE⊥AB,KG⊥CD,KF⊥BC,
而AB∥CD,
∴点E、K、G共线,
∴EG=BC=12cm,
∴EK=KF=6cm,
∴BE=6cm,
∴AE=AB-BE=14-6=8(cm),
在Rt△AEK中,AK
2
=AE
2
+KE
2
,
∴AK=
6
2
+
8
2
=10,
∴AM=10-6=4(cm),
∴点A与⊙K的距离为4cm.
故答案为4.
考点梳理
考点
分析
点评
专题
切线的性质;两点间的距离;勾股定理.
连KE,KF,连AK交⊙K于M点,根据切线的性质得KE⊥AB,KG⊥CD,KF⊥BC,则点E、K、G共线,四边形BCGE为矩形,四边形BFKE为正方形,BE=EK=KF=6cm,在Rt△PEK中利用勾股定理可求出AK,则可得到AM的长,然后根据点与圆之间的距离的定义即可得到点A与⊙K的距离.
本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了矩形的性质以及勾股定理.
计算题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )