切线的性质;正方形的性质;翻折变换(折叠问题).
连接OC,由O为正方形的中心,得到∠DCO=∠BCO,又CF与CE为圆O的切线,根据切线长定理得到CO平分∠ECF,可得出∠DCF=∠BCE,由折叠可得∠BCE=∠FCE,再由正方形的内角为直角,可得出∠ECB为30°,在直角三角形BCE中,设BE=x,利用30°所对的直角边等于斜边的一半得到EC=2x,再由正方形的边长为4,得到BC为4,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可得到EC的长.
此题考查了切线的性质,正方形的性质,勾股定理,切线长定理,以及折叠的性质,熟练掌握定理及性质是解本题的关键.
计算题;压轴题.