试题
题目:
如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆心M的坐标为
(-4,5)
(-4,5)
.
答案
(-4,5)
解:∵四边形ABCO是正方形,A(0,8),
∴AB=OA=CO=BC=8,
过M作MN⊥AB于N,连接MA,
由垂径定理得:AN=
1
2
AB=4,
设⊙M的半径是R,则MN=8-R,AM=R,由勾股定理得:AM
2
=MN
2
+AN
2
,
R
2
=(8-R)
2
+4
2
,
解得:R=5,
∵AN=4,四边形ABCO是正方形,⊙M于x轴相切,
∴M的横坐标是-4,
即M(-4,5),
故答案为:(-4,5).
考点梳理
考点
分析
点评
切线的性质;坐标与图形性质;勾股定理;垂径定理.
过M作MN⊥AB于N,连接MA,设⊙M的半径是R,根据正方形性质求出OA=AB=BC=CO=8,根据垂径定理求出AN,得出M的横坐标,在△AMN中,由勾股定理得出关于R的方程,求出R,即可得出M的纵坐标.
本题考查了勾股定理、切线的性质、正方形性质,垂径定理等知识点,本题综合性比较强,是一道比较好的题目.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )