试题

题目:
在Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,2.4为半径作⊙C,则⊙C和AB的位置关系是
相切
相切

答案
相切

青果学院
解:过C作CD⊥AB于D,
在Rt△ACB中,由勾股定理得:AB=
32+42
=5,
由三角形面积公式得:
1
2
×3×4=
1
2
×5×CD,
CD=2.4,
即C到AB的距离等于⊙C的半径长,
∴⊙C和AB的位置关系是相切,
故答案为:相切.
考点梳理
直线与圆的位置关系.
过C作CD⊥AB于D,根据勾股定理求出AB,根据三角形面积公式求出CD,和⊙C的半径比较即可.
本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.
找相似题