直线与圆的位置关系;坐标与图形性质;勾股定理;垂径定理.
(1)根据题意建立平面直角坐标系,然后作出弦AB的垂直平分线,以及BC的垂直平分线,两直线的交点即为圆心D,连接AD,CD;
(2)①根据第一问画出的图形即可得出C及D的坐标;
②在直角三角形AOD中,由OA及OD的长,利用勾股定理求出AD的长,即为圆O的半径;
③直线CE与圆O的位置关系是相切,理由为:由圆的半径得出DC的长,在直角三角形CEF中,由CF及FE的长,利用勾股定理求出CE的长,再由DE的长,利用勾股定理的逆定理得出三角形DCE为直角三角形,即EC垂直于DC,可得出直线CE为圆O的切线.
此题考查了直线与圆的位置关系,涉及的知识有:坐标与图形性质,垂径定理,勾股定理及逆定理,切线的判定,利用了数形结合的思想,根据题意画出相应的图形是解本题的关键.
计算题.