试题
题目:
(2012·兰州)如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是
8<AB≤10
8<AB≤10
.
答案
8<AB≤10
解:如图,当AB与小圆相切时有一个公共点D,
连接OA,OD,可得OD⊥AB,
∴D为AB的中点,即AD=BD,
在Rt△ADO中,OD=3,OA=5,
∴AD=4,
∴AB=2AD=8;
当AB经过同心圆的圆心时,弦AB最大且与小圆相交有两个公共点,
此时AB=10,
所以AB的取值范围是8<AB≤10.
故答案为:8<AB≤10
考点梳理
考点
分析
点评
专题
直线与圆的位置关系;勾股定理;垂径定理.
解决此题首先要弄清楚AB在什么时候最大,什么时候最小.当AB与小圆相切时有一个公共点,此时可知AB最小;当AB经过同心圆的圆心时,弦AB最大且与小圆相交有两个公共点,此时AB最大,由此可以确定所以AB的取值范围.
此题考查了直线与圆的位置关系,涉及的知识有:垂径定理,勾股定理,以及切线的性质,其中解题的关键是抓住两个关键点:1、当弦AB与小圆相切时最短;2、当AB过圆心O时最长.
计算题.
找相似题
(2013·黔东南州)Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为( )
(2013·盘锦)如图,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )
(2012·衡阳)已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为( )
(2010·娄底)在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定( )
(2008·南昌)在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( )