试题

题目:
关于x的方程x2-
2k-1
x-k=0有两个实数根,则k的取值范围是
k≥
1
2
k≥
1
2

答案
k≥
1
2

解:根据题意得2k-1≥0且△=(-
2k-1
2-4×(-k)≥0,
解得k≥
1
2

故答案为k≥
1
2
考点梳理
根的判别式.
根据二次根式的定义和判别式的意义得到2k-1≥0且△=(-
2k-1
2-4×(-k)≥0,然后求出两不等式的公共部分即可.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
计算题.
找相似题