试题

题目:
已知关于x的一元二次方程mx2+2mx-1+m=0有实数根,则m的取值为
m>0
m>0

答案
m>0

解:根据题意得m≠0且△=4m2-4m·(-1+m)≥0,
解得m>0.
故答案为:m>0.
考点梳理
根的判别式;一元二次方程的定义.
根据一元二次方程的定义和判别式的意义得到m≠0且△=4m2-4m·(-1+m)≥0,然后解两个不等式求出它们的公共部分即可.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
计算题.
找相似题