试题
题目:
当m
=
9
2
=
9
2
时,关于x的一元二次方程x
2
-4x+m-
1
2
=0有两个相等的实数根,此时这两个实数根是
x
1
=x
2
=2.
x
1
=x
2
=2.
.
答案
=
9
2
x
1
=x
2
=2.
解:当△=0时,即△=b
2
-4ac=(-4)
2
-4×1×(m-
1
2
)=18-4m=0,
原方程有两个相等的实数根.
由18-4m=0,解得m=
9
2
.
把m=
9
2
代入方程,原方程变为:x
2
-4x+4=0,
即(x-2)
2
=0,所以x
1
=x
2
=2.
故答案为:=
9
2
;x
1
=x
2
=2.
考点梳理
考点
分析
点评
专题
根的判别式.
当△=0,即△=b
2
-4ac=(-4)
2
-4×1×(m-
1
2
)=18-4m=0,关于x的一元二次方程x
2
-4x+m-
1
2
=0有两个相等的实数根,即可解得m=
9
2
然后把m=
9
2
代入方程,原方程变为:x
2
-4x+4=0,解此方程即可.
本题考查了一元二次方程ax
2
+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b
2
-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
计算题.
找相似题
(2013·枣庄)若关于x的一元二次方程x
2
-2x+m=0有两个不相等的实数根,则m的取值范围是( )
(2013·西宁)已知函数y=kx+b的图象如图所示,则一元二次方程x
2
+x+k-1=0根的存在情况是( )
(2013·潍坊)已知关于x的方程kx
2
+(1-k)x-1=0,下列说法正确的是( )
(2013·十堰)已知关于x的一元二次方程x
2
+2x-a=0有两个相等的实数根,则a的值是( )
(2013·昆明)一元二次方程2x
2
-5x+1=0的根的情况是( )