试题

题目:
一元二次方程mx2+(2m+1)x+m=0有实数根,则m的取值范围是(  )



答案
A
解:当m=0时,原方程变形为x+0=0,解得x=0,原方程有一个实数解;
当m≠0,△≥0时,原方程有实数解,
即(2m+1)2-4m·m≥0,解得m≥-
1
4

所以m≥-
1
4
且m≠0时,原方程有两个实数解,
所以m的取值范围为m≥-
1
4

故选A.
考点梳理
根的判别式;一元二次方程的定义.
讨论:当m=0时,原方程变形为x+0=0,解得x=0,原方程有一个实数解;当m≠0,由于一元二次方程mx2+(2m+1)x+m=0有实数根,则△≥0,即(2m+1)2-4m·m≥0,解得m≥-
1
4
,得到m≥-
1
4
且m≠0时,原方程有两个实数解,综合两种情况即可得到m的取值范围.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
计算题.
找相似题