试题
题目:
当k为何值时,关于x的方程(k+2)x
2
-(2k+1)x+k=0.
(1)有两个实数根?
(2)对k选取一个合适的整数,使原方程有两个实数根,并求此时方程的根.
答案
解:(1)∵于x的方程(k+2)x
2
-(2k+1)x+k=0.有两个实数根,
∴△=[-(2k+1)]
2
-4k(k+2)≥0且k≠-2,
∴k≤
1
4
且k≠-2;
(2)∵由(1)可知k≤
1
4
且k≠-2时方程有两个实数根,
∴设k=
1
4
,此时△=0,
∴x=
2k+1
2(k+2)
=
2×
1
4
+1
2(
1
4
+2)
=
3
5
.
故答案为:k≤
1
4
且k≠-2,
3
5
.
解:(1)∵于x的方程(k+2)x
2
-(2k+1)x+k=0.有两个实数根,
∴△=[-(2k+1)]
2
-4k(k+2)≥0且k≠-2,
∴k≤
1
4
且k≠-2;
(2)∵由(1)可知k≤
1
4
且k≠-2时方程有两个实数根,
∴设k=
1
4
,此时△=0,
∴x=
2k+1
2(k+2)
=
2×
1
4
+1
2(
1
4
+2)
=
3
5
.
故答案为:k≤
1
4
且k≠-2,
3
5
.
考点梳理
考点
分析
点评
专题
根的判别式.
(1)根据方程有两个相等的实数根可知△≥0,k+2≠0,求出k的值即可;
(2)根据△>0时方程有两个相等的实数根求出k的取值范围,在k的取值范围内找一个合适的整数,求出△的值,再利用求根公式求出方程的根即可.
本题考查的是一元二次方程根的判别式,熟知一元二次方程根的情况与判别式△的关系是解答此题的关键.
探究型.
找相似题
(2013·枣庄)若关于x的一元二次方程x
2
-2x+m=0有两个不相等的实数根,则m的取值范围是( )
(2013·西宁)已知函数y=kx+b的图象如图所示,则一元二次方程x
2
+x+k-1=0根的存在情况是( )
(2013·潍坊)已知关于x的方程kx
2
+(1-k)x-1=0,下列说法正确的是( )
(2013·十堰)已知关于x的一元二次方程x
2
+2x-a=0有两个相等的实数根,则a的值是( )
(2013·昆明)一元二次方程2x
2
-5x+1=0的根的情况是( )