试题
题目:
若关于x的方程kx
2
-6x+9=0有实数根,则k的取值范围是( )
A.k<1
B.k≤1
C.k<1且k≠0
D.k≤1且k≠0
答案
B
解:(1)当k=0时,-6x+9=0,解得x=
3
2
;
(2)当k≠0时,此方程是一元二次方程,
∵关于x的方程kx
2
-6x+9=0有实数根,
∴△=(-6)
2
-4k×9≥0,解得k≤1,
由(1)、(2)得,k的取值范围是k≤1.
故选B.
考点梳理
考点
分析
点评
专题
根的判别式.
由于k的取值范围不能确定,故应分k=0和k≠0两种情况进行解答.
本题考查的是根的判别式,解答此题时要注意分k=0和k≠0两种情况进行讨论.
分类讨论.
找相似题
(2013·枣庄)若关于x的一元二次方程x
2
-2x+m=0有两个不相等的实数根,则m的取值范围是( )
(2013·西宁)已知函数y=kx+b的图象如图所示,则一元二次方程x
2
+x+k-1=0根的存在情况是( )
(2013·潍坊)已知关于x的方程kx
2
+(1-k)x-1=0,下列说法正确的是( )
(2013·十堰)已知关于x的一元二次方程x
2
+2x-a=0有两个相等的实数根,则a的值是( )
(2013·昆明)一元二次方程2x
2
-5x+1=0的根的情况是( )