试题

题目:
关于x的一元二次方程kx2-(3k-1)x+2k-1=0,其根的判别式的值为1,求k的值及方程的根.
答案
解:∵关于x的一元二次方程kx2-(3k-1)x+2k-1=0,其根的判别式的值为1,
∴△=(3k-1)2-4k(2k-1)=1,
解得:k1=0,k2=2,…(4分)
∵k=0不合题意舍去,
∴k=2,…(5分)
此时方程为2x2-5x+3=0,
即(2x-3)(x-1)=0,
解得:x1=
3
2
,x2=1.…(8分)
解:∵关于x的一元二次方程kx2-(3k-1)x+2k-1=0,其根的判别式的值为1,
∴△=(3k-1)2-4k(2k-1)=1,
解得:k1=0,k2=2,…(4分)
∵k=0不合题意舍去,
∴k=2,…(5分)
此时方程为2x2-5x+3=0,
即(2x-3)(x-1)=0,
解得:x1=
3
2
,x2=1.…(8分)
考点梳理
根的判别式.
由题意可得△=(3k-1)2-4k(2k-1)=1,解此一元二次方程即可求得:k1=0,k2=2,又因为k≠0,可得k=2,即可得方程:2x2-5x+3=0,然后解此方程即可求得答案.
此题考查了一元二次方程根的判别式与一元二次方程的解法.此题难度不大,解题的关键是掌握一元二次方程根的判别式为:△=b2-4ac.
找相似题