根的判别式.
(1)由关于x的一元二次方程mx2+4x+1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△>0,即42-4·m·1>0,两个不等式的公共解即为m的取值范围;
(2)①m=0时,此方程为一元一次方程,并且方程有解;②当m≠0时,由关于x的一元二次方程mx2+4x+1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△≥0,即42-4·m·1≥0,两个不等式的公共解即为m的取值范围.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;也考查了一元二次方程的定义.