试题
题目:
如果关于x的方程(m+1)x
2
+2mx+m-1=0有实数根,则( )
A.m≠1
B.m=-1
C.m≠±1
D.m为全体实数
答案
D
解:分两种情况考虑:
①若方程为二次方程,m+1≠0,△=4m
2
-4(m+1)(m-1)=4>0,解得m≠-1;
②若方程不是二次方程,则m=-1,解得:x=-1;
综上所述,m为全体实数.
故选D.
考点梳理
考点
分析
点评
专题
根的判别式.
分两种情况考虑:①若方程为二次方程,则二次项系数不为0,△≥0;②若方程不为二次方程,则二次项系数为0,再判断是否有实根,综上得到满足题意的m的取值.
本题考查了方程根的判定,同学们需学会用根的判别式来判断一元二次方程的实根情况.本题容易出现的错误是认为这个方程就是一元二次方程,忽视m+1=0的情况.
分类讨论.
找相似题
(2013·枣庄)若关于x的一元二次方程x
2
-2x+m=0有两个不相等的实数根,则m的取值范围是( )
(2013·西宁)已知函数y=kx+b的图象如图所示,则一元二次方程x
2
+x+k-1=0根的存在情况是( )
(2013·潍坊)已知关于x的方程kx
2
+(1-k)x-1=0,下列说法正确的是( )
(2013·十堰)已知关于x的一元二次方程x
2
+2x-a=0有两个相等的实数根,则a的值是( )
(2013·昆明)一元二次方程2x
2
-5x+1=0的根的情况是( )