试题
题目:
已知
a+4
+
b-1
=0,若方程kx
2
+ax+b=0有两个不相等的实数根,则实数k的取值范围为( )
A.k<4
B.k>-4且k≠0
C.k>4
D.k<4且k≠0
答案
D
解:∵
a+4
+
b-1
=0,
∴a=-4,b=1,
原方程可化为kx
2
-4x+1=0,
∵方程kx
2
+ax+b=0有两个不相等的实数根,
∴△=a
2
-4kb>0,
即(-4)
2
-4k>0,且k≠0,
解得,k<4且k≠0.
故选D.
考点梳理
考点
分析
点评
根的判别式;非负数的性质:算术平方根.
根据非负数的性质求出a、b的值,然后代入kx
2
+ax+b=0中,根据根的判别式求出k的值.
本题考查了非负数的性质和根的判别式,求出a、b的值是解题的关键.
找相似题
(2013·枣庄)若关于x的一元二次方程x
2
-2x+m=0有两个不相等的实数根,则m的取值范围是( )
(2013·西宁)已知函数y=kx+b的图象如图所示,则一元二次方程x
2
+x+k-1=0根的存在情况是( )
(2013·潍坊)已知关于x的方程kx
2
+(1-k)x-1=0,下列说法正确的是( )
(2013·十堰)已知关于x的一元二次方程x
2
+2x-a=0有两个相等的实数根,则a的值是( )
(2013·昆明)一元二次方程2x
2
-5x+1=0的根的情况是( )