试题
题目:
(2001·吉林)下列方程有实数根的是( )
A.2x
2
+x+1=0
B.x
2
-x-1=0
C.x
2
-6x+10=0
D.x
2
+1=
2
x
答案
B
解:A、△=b
2
-4ac=1-8=-7<0,方程没有实数根;
B、△=b
2
-4ac=1+4=5>0,方程有两个不相等的实数根;
C、△=b
2
-4ac=36-40=-4<0,方程没有实数根;
D、△=b
2
-4ac=2-4=-2<0,方程没有实数根.
故选B
考点梳理
考点
分析
点评
根的判别式.
利用一元二次方程的根的判别式△=b
2
-4ac,分别计算各选项的△值,然后判断根的情况.一元二次方程有实数根即方程的判别式的值大于或等于0,即可作出判断.
总结:一元二次方程根的情况与判别式△的关系:
(1)△>0·方程有两个不相等的实数根;
(2)△=0·方程有两个相等的实数根;
(3)△<0·方程没有实数根.
找相似题
(2013·枣庄)若关于x的一元二次方程x
2
-2x+m=0有两个不相等的实数根,则m的取值范围是( )
(2013·西宁)已知函数y=kx+b的图象如图所示,则一元二次方程x
2
+x+k-1=0根的存在情况是( )
(2013·潍坊)已知关于x的方程kx
2
+(1-k)x-1=0,下列说法正确的是( )
(2013·十堰)已知关于x的一元二次方程x
2
+2x-a=0有两个相等的实数根,则a的值是( )
(2013·昆明)一元二次方程2x
2
-5x+1=0的根的情况是( )