试题
题目:
利用换元法解下列方程:
(1)(x+2)
2
+6(x+2)-91=O;
(2)x
2
-(1+2
3
)x-3+
3
=0.
答案
解:(1)(x+2)
2
+6(x+2)-91=O;
设x+2=y,则原方程可变形为:
y
2
+6y-91=0,
解得:y
1
=7,y
2
=-13,
当y
1
=7时,x+2=7,
x
1
=5,
当y
2
=-13时,x+2=-13,
x
2
=-15;
(2)x
2
-(1+2
3
)x-3+
3
=0,
[x-(3+
3
)][x+(2-
3
)]=0,
x-(3+
3
)=0,x+(2-
3
)=0,
x
1
=3+
3
,x
2
=-2+
3
.
解:(1)(x+2)
2
+6(x+2)-91=O;
设x+2=y,则原方程可变形为:
y
2
+6y-91=0,
解得:y
1
=7,y
2
=-13,
当y
1
=7时,x+2=7,
x
1
=5,
当y
2
=-13时,x+2=-13,
x
2
=-15;
(2)x
2
-(1+2
3
)x-3+
3
=0,
[x-(3+
3
)][x+(2-
3
)]=0,
x-(3+
3
)=0,x+(2-
3
)=0,
x
1
=3+
3
,x
2
=-2+
3
.
考点梳理
考点
分析
点评
换元法解一元二次方程.
(1)先设x+2=y,再把原方程进行变形,求出y的值,再把y的值代入x+2=y,即可求出x的值;
(2)先把方程的左边因式分解,得出x-(3+
3
)=0,x+(2-
3
)=0,再求出x的值即可.
此题考查了换元法和因式分解法解一元二次方程,换元法是把某个式子看作一个整体,用一个字母去代替它,实行等量替换.
找相似题
(2011·恩施州)解方程(x-1)
2
-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y
2
-5y+4=0,解得y
1
=1,y
2
=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x
1
=2,x
2
=5.则利用这种方法求得方程 (2x+5)
2
-4(2x+5)+3=0的解为( )
(2005·泸州)用换元法解方程(x
2
+x)
2
+2(x
2
+x)-1=0,若设y=x
2
+x,则原方程可变形为( )
(2005·兰州)已知实数x满足x
2
+
1
x
2
+x+
1
x
=0,那么x+
1
x
的值是( )
(2002·佛山)若实数x,y满足x
2
-2xy+y
2
+x-y-6=0,则x-y的值是( )
(1998·海淀区)用换元法解方程x
2
+8x+
x
2
+8x-11
=23
,若设y=
x
2
+8x-11
,则原方程可化为( )